Higgs boson

From Wikipedia, the free encyclopedia
“God Particle” redirects here. For other uses, see The God Particle (disambiguation).

The Higgs boson is an elementary particle in the Standard Model of particle physics, produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. It is named after physicist Peter Higgs, who in 1964, along with five other scientists, proposed the Higgs mechanism to explain why particles have mass. This mechanism implies the existence of the Higgs boson. The Higgs boson was initially discovered as a new particle in 2012 by the ATLAS and CMS collaborations based on collisions in the LHC at CERN, and the new particle was subsequently confirmed to match the expected properties of a Higgs boson over the following years.

On 10 December 2013, two of the physicists, Peter Higgs and François Englert, were awarded the Nobel Prize in Physics for their theoretical predictions. Although Higgs’s name has come to be associated with this theory (the Higgs mechanism), several researchers between about 1960 and 1972 independently developed different parts of it.

In mainstream media the Higgs boson has often been called the “God particle“, from a 1993 book on the topic, although the nickname is strongly disliked by many physicists, including Higgs himself, who regard it as sensationalism.


The Standard Model

Physicists explain the properties of forces between elementary particles in terms of the Standard Model – a widely accepted framework for understanding almost everything in physics in the known universe, other than gravity. (A separate theory, general relativity, is used for gravity.) In this model, the fundamental forces in nature arise from properties of our universe called gauge invariance and symmetries. The forces are transmitted by particles known as gauge bosons.

The problem of gauge boson mass

Field theories had been used with great success in understanding the electromagnetic field and the strong force, but by around 1960 all attempts to create a gauge invariant theory for the weak force (and its combination with fundamental force electromagnetism, the electroweak interaction) had consistently failed, with gauge theories thereby starting to fall into disrepute as a result. The problem was that gauge invariant theory contains symmetry requirements, and these incorrectly predicted that the weak force’s gauge bosons (W and Z) should have zero mass. It is known from experiments that they have non-zero mass.[15] This meant that either gauge invariance was an incorrect approach, or something else – unknown – was giving these particles their mass. By the late 1950s, physicists had not resolved these issues and were still unable to create a comprehensive theory for particle physics, because all attempts to solve this problem just created more theoretical problems.

Symmetry breaking

In the late 1950s, Yoichiro Nambu recognised that spontaneous symmetry breaking, a process where a symmetric system ends up in an asymmetric state, could occur under certain conditions.  In 1962 physicist Philip Anderson, working in the field of condensed matter physics, observed that symmetry breaking played a role in superconductivity, and may have relevance to the problem of gauge invariance in particle physics. In 1963, this was shown to be theoretically possible, at least for some limited (non-relativistic) cases.

Higgs mechanism[edit]

Following the 1962 and 1963 papers, three groups of researchers independently published the 1964 PRL symmetry breaking papers with similar conclusions and for all cases, not just some limited cases. They showed that the conditions for electroweak symmetry would be “broken” if an unusual type of field existed throughout the universe, and indeed, some fundamental particles would acquire mass. The field required for this to happen (which was purely hypothetical at the time) became known as the Higgs field (after Peter Higgs, one of the researchers) and the mechanism by which it led to symmetry breaking, known as the Higgs mechanism. A key feature of the necessary field is that it would take less energy for the field to have a non-zero value than a zero value, unlike all other known fields, therefore, the Higgs field has a non-zero value (or vacuum expectationeverywhere. This non-zero value could in theory break electroweak symmetry. It was the first proposal capable of showing how the weak force gauge bosons could have mass despite their governing symmetry, within a gauge invariant theory.

Although these ideas did not gain much initial support or attention, by 1972 they had been developed into a comprehensive theory and proved capable of giving “sensible” results that accurately described particles known at the time, and which, with exceptional accuracy, predicted several other particles discovered during the following years. During the 1970s these theories rapidly became the Standard Model of particle physics.

Higgs field

The Standard Model includes a field of the kind needed to “break” electroweak symmetry and give particles their correct mass. This field, called the “Higgs Field”, exists throughout space, and it breaks some symmetry laws of the electroweak interaction, triggering the Higgs mechanism. It therefore causes the W and Z gauge bosons of the weak force to be massive at all temperatures below an extreme high value. When the weak force bosons acquire mass, this affects the distance they can freely travel, which becomes very small, also matching experimental findings. Furthermore, it was later realised that the same field would also explain, in a different way, why other fundamental constituents of matter (including electrons and quarks) have mass.

Unlike all other known fields such as the electromagnetic field, the Higgs field is a scalar field, and has a non-zero constant value in vacuum.

The “central problem”

There was not yet any direct evidence that the Higgs field existed, but even without proof of the field, the accuracy of its predictions led scientists to believe the theory might be true. By the 1980s the question of whether the Higgs field existed, and therefore whether the entire Standard Model was correct, had come to be regarded as one of the most important unanswered questions in particle physics.

For many decades, scientists had no way to determine whether the Higgs field existed, because the technology needed for its detection did not exist at that time. If the Higgs field did exist, then it would be unlike any other known fundamental field, but it also was possible that these key ideas, or even the entire Standard Model, were somehow incorrect.

The hypothesised Higgs mechanism made several accurate predictions. One crucial prediction was that a matching particle called the “Higgs boson” should also exist. Proving the existence of the Higgs boson could prove whether the Higgs field existed, and therefore finally prove whether the Standard Model’s explanation was correct. Therefore there was an extensive search for the Higgs boson, as a way to prove the Higgs field itself existed.

The existence of the Higgs field became the last unverified part of the Standard Model of particle physics, and for several decades was considered “the central problem in particle physics”.[18][19]

Search and discovery

Although the Higgs field exists everywhere, proving its existence was far from easy. In principle, it can be proved to exist by detecting its excitations, which manifest as Higgs particles (the Higgs boson), but these are extremely difficult to produce and detect, due to the energy required to produce them and their very rare production even if the energy is sufficient. It was therefore several decades before the first evidence of the Higgs boson was found. Particle colliders, detectors, and computers capable of looking for Higgs bosons took more than 30 years (c. 1980–2010) to develop.

The importance of this fundamental question led to a 40-year search, and the construction of one of the world’s most expensive and complex experimental facilities to date, CERN‘s Large Hadron Collider, in an attempt to create Higgs bosons and other particles for observation and study. On 4 July 2012, the discovery of a new particle with a mass between 125 and 127 GeV/c2 was announced; physicists suspected that it was the Higgs boson. Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin, two fundamental attributes of a Higgs boson. This also means it is the first elementary scalar particle discovered in nature By March 2013, the existence of the Higgs boson was confirmed, and therefore, the concept of some type of Higgs field throughout space is strongly supported.  The presence of the field, now confirmed by experimental investigation, explains why some fundamental particles have mass, despite the symmetries controlling their interactions implying that they should be massless. It also resolves several other long-standing puzzles, such as the reason for the extremely short distance travelled by the weak force bosons, and therefore the weak force’s extremely short range.  As of 2018, in-depth research shows the particle continuing to behave in line with predictions for the Standard Model Higgs boson. More studies are needed to verify with higher precision that the discovered particle has all of the properties predicted, or whether, as described by some theories, multiple Higgs bosons exist.  he nature and properties of this field are now being investigated further, using more data collected at the LHC.


Various analogies have been used to describe the Higgs field and boson, including analogies with well-known symmetry-breaking effects such as the rainbow and prismelectric fields, and ripples on the surface of water.

Other analogies based on resistance of macro objects moving through media (such as people moving through crowds, or some objects moving through syrup or molasses) are commonly used but misleading, since the Higgs field does not actually resist particles, and the effect of mass is not caused by resistance.

Overview of properties

In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, no electric charge, and no colour charge. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. The Higgs field is a scalar field with a “Mexican hat-shaped” potential. In its ground state, this causes the field to have a nonzero value everywhere (including otherwise empty space), and as a result, below a very high energy it breaks the weak isospin symmetry of the electroweak interaction. (Technically the non-zero expectation value converts the Lagrangian‘s Yukawa coupling terms into mass terms.) When this happens, three components of the Higgs field are “absorbed” by the SU(2) and U(1) gauge bosons (the “Higgs mechanism“) to become the longitudinal components of the now-massive W and Z bosons of the weak force. The remaining electrically neutral component either manifests as a Higgs particle, or may couple separately to other particles known as fermions (via Yukawa couplings), causing these to acquire mass as well.

Evidence of the Higgs field and its properties has been extremely significant for many reasons. The importance of the Higgs boson is largely that it is able to be examined using existing knowledge and experimental technology, as a way to confirm and study the entire Higgs field theory. Conversely, proof that the Higgs field and boson do not exist would have also been significant.

Particle physics

Validation of the Standard Model

The Higgs boson validates the Standard Model through the mechanism of mass generation. As more precise measurements of its properties are made, more advanced extensions may be suggested or excluded. As experimental means to measure the field’s behaviours and interactions are developed, this fundamental field may be better understood. If the Higgs field had not been discovered, the Standard Model would have needed to be modified or superseded.

Related to this, a belief generally exists among physicists that there is likely to be “new” physics beyond the Standard Model, and the Standard Model will at some point be extended or superseded. The Higgs discovery, as well as the many measured collisions occurring at the LHC, provide physicists a sensitive tool to search their data for any evidence that the Standard Model seems to fail, and could provide considerable evidence guiding researchers into future theoretical developments.

Symmetry breaking of the electroweak interaction

Below an extremely high temperature, electroweak symmetry breaking causes the electroweak interaction to manifest in part as the short-ranged weak force, which is carried by massive gauge bosons. In the history of the universe, electroweak symmetry breaking is believed to have happened shortly after the hot big bang, when the universe was at a temperature 159.5±1.5 GeV.[27] This symmetry breaking is required for atoms and other structures to form, as well as for nuclear reactions in stars, such as our Sun. The Higgs field is responsible for this symmetry breaking.

Particle mass acquisition

The Higgs field is pivotal in generating the masses of quarks and charged leptons (through Yukawa coupling) and the W and Z gauge bosons (through the Higgs mechanism). It is worth noting that the Higgs field does not “create” mass out of nothing (which would violate the law of conservation of energy), nor is the Higgs field responsible for the mass of all particles. For example, approximately 99% of the mass of baryons (composite particles such as the proton and neutron), is due instead to quantum chromodynamic binding energy, which is the sum of the kinetic energies of quarks and the energies of the massless gluons mediating the strong interaction inside the baryons. In Higgs-based theories, the property of “mass” is a manifestation of potential energy transferred to fundamental particles when they interact (“couple”) with the Higgs field, which had contained that mass in the form of energy.

Scalar fields and extension of the Standard Model

The Higgs field is the only scalar (spin 0) field to be detected; all the other fields in the Standard Model are spin ½ fermions or spin 1 bosons. According to Rolf-Dieter Heuer, director general of CERN when the Higgs boson was discovered, this existence proof of a scalar field is almost as important as the Higgs’s role in determining the mass of other particles. It suggests that other hypothetical scalar fields suggested by other theories, from the inflaton to quintessence, could perhaps exist as well.



There has been considerable scientific research on possible links between the Higgs field and the inflaton – a hypothetical field suggested as the explanation for the expansion of space during the first fraction of a second of the universe (known as the “inflationary epoch“). Some theories suggest that a fundamental scalar field might be responsible for this phenomenon; the Higgs field is such a field, and its existence has led to papers analysing whether it could also be the inflaton responsible for this exponential expansion of the universe during the Big Bang. Such theories are highly tentative and face significant problems related to unitarity, but may be viable if combined with additional features such as large non-minimal coupling, a Brans–Dicke scalar, or other “new” physics, and they have received treatments suggesting that Higgs inflation models are still of interest theoretically.

Nature of the universe, and its possible fates

Diagram showing the Higgs boson and top quark masses, which could indicate whether our universe is stable, or a long-lived ‘bubble’. As of 2012, the 2 σ ellipse based on Tevatron and LHC data still allows for both possibilities.

In the Standard Model, there exists the possibility that the underlying state of our universe – known as the “vacuum” – is long-lived, but not completely stable. In this scenario, the universe as we know it could effectively be destroyed by collapsing into a more stable vacuum state. This was sometimes misreported as the Higgs boson “ending” the universe. If the masses of the Higgs boson and top quark are known more precisely, and the Standard Model provides an accurate description of particle physics up to extreme energies of the Planck scale, then it is possible to calculate whether the vacuum is stable or merely long-lived. A 125–127 GeV Higgs mass seems to be extremely close to the boundary for stability, but a definitive answer requires much more precise measurements of the pole mass of the top quark. New physics can change this picture.

If measurements of the Higgs boson suggest that our universe lies within a false vacuum of this kind, then it would imply – more than likely in many billions of years– that the universe’s forces, particles, and structures could cease to exist as we know them (and be replaced by different ones), if a true vacuum happened to nucleate. It also suggests that the Higgs self-coupling λ and its βλ function could be very close to zero at the Planck scale, with “intriguing” implications, including theories of gravity and Higgs-based inflation.A future electron–positron collider would be able to provide the precise measurements of the top quark needed for such calculations.

Vacuum energy and the cosmological constant

More speculatively, the Higgs field has also been proposed as the energy of the vacuum, which at the extreme energies of the first moments of the Big Bang caused the universe to be a kind of featureless symmetry of undifferentiated, extremely high energy. In this kind of speculation, the single unified field of a Grand Unified Theory is identified as (or modelled upon) the Higgs field, and it is through successive symmetry breakings of the Higgs field, or some similar field, at phase transitions that the presently known forces and fields of the universe arise.

The relationship (if any) between the Higgs field and the presently observed vacuum energy density of the universe has also come under scientific study. As observed, the present vacuum energy density is extremely close to zero, but the energy density expected from the Higgs field, supersymmetry, and other current theories are typically many orders of magnitude larger. It is unclear how these should be reconciled. This cosmological constant problem remains a major unanswered problem in physics.

Facebook Twitter Instagram YouTube Pinterest